我国科技创新效率的实证研究

基于DEA-Malmquist模型和中国省际面板数据

Translated title of the contribution: Empirical Study on Scientific and Technological Innovation Efficiency: Based on DEA-Malmquist Model and Provincial Panel Data of China

王 珍珍, Maoxing Huang

Research output: Contribution to journalArticle

Abstract

This paper uses the DEA-Malmquist model to analyze the static and dynamic characters o1 C'hina's scientific and technological innovation efficiency at provincial level during 2002-2010. The results show as follows; China s overall scientific and technological innovation is effective,and scientific and technological innovation efficiency shows obvious gradient characteristics,namely that of south coastal economic zone is the highest;there are still some provinces being in redundancy and output shortage situation; the improvement of total factor productivity is mainly due to technical progress and scale efficiency improvement,but the difference in different regions. Finally,it proposes that adjusting resource allocation,improving transformation efficiency and formulating and implementing transformation measures should he done
Original languageChinese (Simplified)
Pages (from-to)55-61
Number of pages7
Journal技术经济
Issue number10
Publication statusPublished - 2013

Fingerprint

Panel data
Technological innovation
Empirical study
China
Malmquist
Shortage
Total factor productivity
Coast
Scale efficiency
Economics
Redundancy
Technical progress
Resource allocation
Gradient

Keywords

  • scientific and technological innovation efficiency
  • efficiency evaluation
  • panel data
  • DEA
  • Malmquist index

Cite this

我国科技创新效率的实证研究 : 基于DEA-Malmquist模型和中国省际面板数据. / 王珍珍; Huang, Maoxing.

In: 技术经济, No. 10, 2013, p. 55-61.

Research output: Contribution to journalArticle

@article{04301fcd3c6d4cb08c2cbd1549afc8a6,
title = "我国科技创新效率的实证研究: 基于DEA-Malmquist模型和中国省际面板数据",
abstract = "运用DEA-Malmquist模型对2002—2010年我国省域科技创新效率进行了静态和动态分析。研究结果表明:十六大以来,我国整体科技创新的投入、产出是有效的;我国科技创新效率存在明显的梯度特征,即南部沿海经济区的科技创新效率最高,东北综合经济区的科技创新效率最低,部分省份仍然存在投入冗余和产出不足的情况;全要素生产率的改善主要得益于技术进步和规模效率的改进,但是各地区全要素生产率的改善并不均匀。最后指出,未来发展仍需合理调节资源配置、提高科技成果转化效率、制定和实施促进科技成果转化等各种措施。",
keywords = "scientific and technological innovation efficiency, efficiency evaluation, panel data, DEA, Malmquist index, 科技创新效率, 效率评价, 面板数据, DEA, Malmquist指数",
author = "珍珍 王 and Maoxing Huang",
year = "2013",
language = "Chinese (Simplified)",
pages = "55--61",
journal = "技术经济",
issn = "1002-980X",
number = "10",

}

TY - JOUR

T1 - 我国科技创新效率的实证研究

T2 - 基于DEA-Malmquist模型和中国省际面板数据

AU - 王, 珍珍

AU - Huang, Maoxing

PY - 2013

Y1 - 2013

N2 - 运用DEA-Malmquist模型对2002—2010年我国省域科技创新效率进行了静态和动态分析。研究结果表明:十六大以来,我国整体科技创新的投入、产出是有效的;我国科技创新效率存在明显的梯度特征,即南部沿海经济区的科技创新效率最高,东北综合经济区的科技创新效率最低,部分省份仍然存在投入冗余和产出不足的情况;全要素生产率的改善主要得益于技术进步和规模效率的改进,但是各地区全要素生产率的改善并不均匀。最后指出,未来发展仍需合理调节资源配置、提高科技成果转化效率、制定和实施促进科技成果转化等各种措施。

AB - 运用DEA-Malmquist模型对2002—2010年我国省域科技创新效率进行了静态和动态分析。研究结果表明:十六大以来,我国整体科技创新的投入、产出是有效的;我国科技创新效率存在明显的梯度特征,即南部沿海经济区的科技创新效率最高,东北综合经济区的科技创新效率最低,部分省份仍然存在投入冗余和产出不足的情况;全要素生产率的改善主要得益于技术进步和规模效率的改进,但是各地区全要素生产率的改善并不均匀。最后指出,未来发展仍需合理调节资源配置、提高科技成果转化效率、制定和实施促进科技成果转化等各种措施。

KW - scientific and technological innovation efficiency

KW - efficiency evaluation

KW - panel data

KW - DEA

KW - Malmquist index

KW - 科技创新效率

KW - 效率评价

KW - 面板数据

KW - DEA

KW - Malmquist指数

M3 - 文章

SP - 55

EP - 61

JO - 技术经济

JF - 技术经济

SN - 1002-980X

IS - 10

ER -